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Abstract. The scalar di¤erential inclusion

_xx A f ðxÞ þ gðxÞu; u A ½�1; 1�; xð0Þ ¼ x0 ð0:1Þ

is considered as a model of the dynamical system _xx ¼ f ðxÞ perturbed by the

bounded noise gðxÞu, u A ½�1; 1�, and the problem of constructing a nontrivial

probability measure on the set S of solutions to (0.1) is studied. In particular, it

is shown that:

(i) every Markov process whose probability measure is supported on S is

degenerate, in a sense to be specified (see Theorem 3.1);

(ii) given a flow of probability measures mt on the reachable sets Rt of (0.1),

satisfying a certain compatibility condition, a Markov process Xt is con-

structed such that its marginals are exactly mt and (0.1) is satisfied ‘‘from

one side’’ (see Theorem 4.1); its finite-dimensional distributions are com-

puted and the regularity of its sample paths is investigated (see Section

5.2);

(iii) given a process of a type previously considered, another process Yt is con-

structed through its finite-dimensional distributions, and its distribution is

shown to be supported exactly on S.

Finally, a model example is considered (see Section 7).
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struction of Markov and non-Markov processes, Finite-dimensional distributions,

Piecewise deterministic processes.
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1. Introduction

This paper deals with the modeling of a dynamical system with uncertainty. We
restrict ourselves to systems described by a scalar di¤erential equation, with the
uncertainty acting as a parameter within the equation. In this section, for the sake
of clarity, we assume that the noise appears linearly in the equation, namely,

_xx ¼ f ðxÞ þ gðxÞu: ð1:1Þ

Throughout the paper the general case

_xx ¼ F ðx; uÞ

will always be treated. We think of (1.1) as the ordinary di¤erential equation
_xx ¼ f ðxÞ, which we call the deterministic part of (1.1), perturbed by the ‘‘noise’’
gðxÞu, u being a parameter possibly belonging to an infinite-dimensional space.
We require f to be at least Lipschitz continuous, in order to have global existence
and uniqueness for the unperturbed equation. A di‰culty of the model is how to
make gðxÞu represent a noise. There are several di¤erent approaches to this task
(see, e.g. [6], [13] and [14]), each of them being possibly preferable in some sit-
uations.

The first model consists in taking a white noise process in place of u. This idea
is classical and brought to innumerable applications. In this way, (1.1) is no
longer an ordinary di¤erential equation, because u is no longer well defined as a
function: (1.1) becomes indeed a stochastic di¤erential equation. The only infor-
mations which can be obtained from it are statistical properties of the solution,
which is a stochastic process. This approach has been questioned, in some sit-
uations, because the statistical properties of the white noise may not be suitable to
describe the observed noise. Some discussions of this problem in the field of theo-
retical population biology, for example, can be found in [9], [15], [1] and [16].

The second approach consists in considering (1.1) as a random di¤erential equa-
tion. Now one chooses u ¼ utðoÞ as time functions, depending on a parameter o

in a probability space ðW;F;PÞ; utðoÞ must be regular enough to let (1.1) be an
ordinary di¤erential equation, for a.e. o, and so generate a probability on the set
of solutions. This approach seems to be the most natural and general one; on the
other hand, it has not reached the same range of applications as the previous
approach (see, however, [14]). The problem consists first in finding a process ut

which realizes the observed noise. Secondly, the joint distributions of the solution
process can very rarely be computed (see [14]), and this process is almost never
Markov. Therefore, the statistical properties of the solution process are di‰cult to
derive.

The third approach may be called the ‘‘unknown deterministic noise’’. The
noise u ¼ ut is thought of as an unknown function, possibly satisfying some con-
straints, but no statistical properties are assumed. A special but relevant case of
the deterministic approach is when the noise is constrained to take a value in
given sets (see [13], [6] and [10]). In particular, we assume that the noise is norm
bounded, with an a priori given bound. In this setting, this approach consists in
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taking u as an arbitrary measurable function, with values in a prescribed interval
(or bounded set), say ½�1;þ1�. Now, for any choice of uð�Þ, ð1:1Þ is an ordinary
di¤erential equation; (1.1) can be seen as a control problem, or, equivalently, as
the di¤erential inclusion

_xx A f ðxÞ þ gðxÞ½�1;þ1�: ð1:2Þ

This model is deterministic, if one thinks of the set of solutions as a whole, and it
provides an estimate about where the actual trajectory may be found. Interest in
this type of model has been increasing in the last years: this approach seems to be
conceptually easy and rather general. However, it does not allow, as it is, any
probabilistic treatment.

In this paper we explore the possibility of probabilistically describing a dynam-
ical system perturbed by bounded noise, i.e. the (scalar) di¤erential inclusion (1.2),
under minimal statistical assumptions on it.

We start with a negative result (Theorem 3.1): any Markov process Xt such that
a.s. its sample paths are solutions of (1.2) must be degenerate, in the sense that _XXt

is a deterministic function, possibly time-dependent, of Xt.
Then two possibilities are followed. First (Sections 4 and 5) we consider the

case where just one of the di¤erential constraints of (1.2) is active, e.g. the upper
one, but keep the requirement that the process we want to construct be Markov;
moreover, we want to a priori assign the marginals of Xt: this will be the only
statistical assumption on (1.2) we make in this framework. We must relax the
Lipschitz continuity of the sample paths, so that the di¤erential constraint has to
be interpreted in a suitable way. More precisely, we look for a Markov process Xt

such that a.s.
Xtþh a jþh ðXtÞ; Et; hb 0; ð1:3Þ

where jþ� ðyÞ is the maximal solution of (1.2) such that jþ0 ðyÞ ¼ y. The existence
statement reads: given a flow of densities ptðxÞ on the reachable set of (1.2) sat-
isfying a necessary and su‰cient compatibility condition with f and g, we con-
struct a strong Markov process, which satisfies (1.3) and whose marginal densities
are exactly ptðxÞ. The idea of the construction came from a natural definition of
joint distributions (see (4.7)), taking into account reachable sets of (1.2); then, from
the two-dimensional distributions one can compute the transition probabilities,
and prove the existence of the process by checking the Chapman–Kolmogorov
identity. Moreover, we show (under some regularity of pt) that all trajectories
are càdlàg and only finitely many downwards jumps may occur, in any interval
0 < s < t; moreover, Xt behaves deterministically between jumps, in the sense that
if T1 and T2 are two subsequent jump times, for t A ½T1;T2Þ it holds that
Xt ¼ jþt�T1

ðXT1
Þ. In other words, Xt is a piecewise deterministic process. However,

it has some properties which distinguish it among all such processes (see [5, Sec-
tion 2], [8, Section III] and [7]): first, it is not necessarily homogeneous, second, all
joint distributions as well as the transition probabilities have an explicit expres-
sion. Knowing all joint distributions permits the explicit computation of the prob-
ability that Xt remains below a solution of (1.2), as well as an approximation of
the probability of extinction at a given time (Section 5.3, Section 7). Obviously, an
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entirely symmetric construction can be performed with the minimal solution in
place of the maximal.

The second possibility is giving up the Markov property, and constructing a
process whose trajectories are solutions of (1.2). Of course, there are many such
processes, at least for particular choices of f and g; for example, the telegraph (or
Kac) process, whose trajectories are a.s. polygonal solutions of _xx A f�1; 1g. Our
contribution is the construction (Section 6), for any process Xt satisfying (1.3), of
a process Yt associated with it, whose distribution Q is supported on the whole set
of solutions of (1.2), and such that all of its joint distributions are known. To the
best of our knowledge, Yt is the only nontrivial stochastic process with Lipschitz
trajectories whose finite-dimensional distributions have an explicit expression. This
fact permits us to compute the law of the derivative process _YYt, as well as to
compute the probability that Yt remains below a given solution of (1.2), and to
approximate the extinction probability.

Finally (Section 7), some explicit computations for the model case _xx A ½�1; 1�,
xð0Þ ¼ 0 are presented, both for Xt and for Yt; Section 2 contains some basic nota-
tions and results.

In order for these processes to be e¤ective tools for modeling dynamical
systems with bounded noise (only bounded from above for the process Xt), a
deeper analysis of them is desirable. In particular, laws of jump times of Xt and
of _YYt, as well as the construction of Xt given jump times and of Yt with pre-
assigned marginals, are facts of some interest. Forthcoming papers will be
dedicated to the above properties, together with a construction of both Xt and
Yt with given marginals without density. Moreover, an interpretation of the
process Yt as driven by Xt will be provided, so that Yt may model, for example,
the evolution of a population depending on some good Xt, subject to random
catastrophies.

2. Preliminaries

First, a few symbols and notations are presented. If G is a multifunction from a
set A into a set B, we denote its graph by graphðGÞ ¼ fðx; yÞ A A � B : y A GðxÞ;
x A Ag. We write 1Að�Þ as the characteristic function of a set A. Given a; b A R
we write a5b :¼ minfa; bg and a4b :¼ maxfa; bg. The unit mass concen-
trated at z A R is denoted by dzðdxÞ. The product s-field generated by Lebesgue-
measurable and Borel-measurable subsets of R is indicated by LnB. The con-
vex hull of a set A is denoted by co A.

Lemma 2.1. Let U be a compact metric space, and let F : R� U ! R be a contin-

uous function, with Fð� ; uÞ Lipschitz uniformly in u. Set FþðxÞ ¼ maxu AU F ðx; uÞ,
F�ðxÞ ¼ minu AU Fðx; uÞ. Then the maps Fþ;F� are Lipschitz, with the same con-

stant as F.

Proof. Assume F to be L-Lipschitz and fix x; y A R. Let uþ; vþ be such that,
respectively, FþðxÞ ¼ F ðx; uþÞ, FþðyÞ ¼ F ðy; vþÞ. Assume that FþðxÞbFþðyÞ.
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Then FþðxÞ � FþðyÞaFþðxÞ � F ðy; uþÞaLjx � yj. If FþðxÞ < FþðyÞ, it su‰-
ces to interchange x; y; uþ; vþ. The same argument holds for F�. 9

Consider the (scalar) di¤erential inclusion

_xx ¼ F ðx; uÞ; u A U ; ð2:1Þ
with initial condition

xð0Þ ¼ y: ð2:2Þ

Fix T > 0 and call SðyÞ the set of Carathéodory solutions of (2.1), (2.2) on the
interval ½0;T �, i.e. the set of all absolutely continuous functions which satisfy (2.2)
and, for a.e. t, (2.1); we recall that SðyÞ is bounded in C0ð0;TÞ, endowed with
the sup-norm topology; the reachable set at time t is indicated by RtðyÞ. When the
dependence on y is dropped, we mean that y ¼ x0 is the initial condition, fixed
once for all. The minimal and maximal solutions of (2.1), (2.2), which (for t > 0)
are the solutions of _xx ¼ F�ðxÞ and of _xx ¼ FþðxÞ, xð0Þ ¼ y, respectively, are
denoted by j�� ðyÞ, jþ� ðyÞ. We observe that both the maximal and the minimal
solutions satisfy the semigroup property jþt ðjþs ðyÞÞ ¼ jþtþsðyÞ. Moreover, maxi-
mal and minimal solutions can be considered also backwards in time, by inter-
changing Fþ with F�; in particular, if s < t, jþt�sðj�s�tðxÞÞ ¼ x for all x.

The following simple lemma is the fundamental tool for our constructions.

Lemma 2.2. Let 0 < t1 < � � � < tn aT, x1; . . . ; xn A R be such that

xi b j�ti
for all i ¼ 1; . . . ; n: ð2:3Þ

Then problem (2.1) with the initial condition

xð0Þ ¼ x0 ð2:4Þ
and the constraints

xðtiÞa xi; Ei ¼ 1; . . . ; n; ð2:5Þ

has a set of Carathéodory solutions with a unique maximal element, denoted by

jþt ðt1; . . . ; tn; x1; . . . ; xnÞ, which is nondecreasing in each of the variables x1; . . . ; xn

and is Lipschitz in ðt1; . . . ; tn; x1; . . . ; xnÞ. Symmetrically, if xi a jþti
the problem

(2.1), (2.4) with the constraints

xðtiÞb xi; Ei ¼ 1; . . . ; n;

has a set of Carathéodory solutions with a unique minimal element, denoted by

j�t ðt1; . . . ; tn; x1; . . . ; xnÞ, which is nondecreasing in each of the variables x1; . . . ; xn

and is Lipschitz in ðt1; . . . ; tn; x1; . . . ; xnÞ.

Proof. Set t0 ¼ 0 and define, for i ¼ 0; . . . ; n, xið�Þ to be the maximal Car-
athéodory solution of (2.1), with the initial condition xðtiÞ ¼ xi, i.e. the solu-
tion of

_xx ¼ F�ðxÞ; xðtiÞ ¼ xi; for t < ti;
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and of
_xx ¼ FþðxÞ; xðtiÞ ¼ xi; for t > ti:

Set
jþt ðt1; . . . ; tn; x1; . . . ; xnÞ ¼ minfxiðtÞ : i ¼ 0; . . . ng;

then jþ is clearly a Carathéodory solution of (2.1), which satisfies (2.5); by (2.3),
(2.2) holds too. Moreover, jþ is maximal, because if c is any solution of (2.1),
(2.2), (2.5), then cðtÞa xiðtÞ for all t A ½0;T � and for all i ¼ 0; . . . ; n. Uniqueness
and monotonicity follow directly from maximality, while Lipschitz continuity is
obtained from the Lipschitz dependence of xi on the initial conditions. The proof
for the minimal solution goes along the same lines. 9

3. Markov Processes with Absolutely Continuous Trajectories

The statement ‘‘every homogeneous strong Markov process on the real line with
a.s. continuous trajectories is a di¤usion’’ can be found in several references (see,
e.g. [12]). This fact suggests that a homogeneous strong Markov process with
Lipschitz, or absolutely continuous, trajectories must be in some sense degenerate.
Since we deal with not necessarily homogeneous processes, we find it easier to
prove directly a simple degeneracy property, which forbids Markovianity to pro-
cesses in Rn which may be reasonable candidates to model bounded noise.

Theorem 3.1. Let ðW;F;Ft;Xt;PÞ be an Rn-valued Markov process such that,

a.s., t 7! Xt is absolutely continuous. Let T > 0 be fixed and let

C ¼ ðo; tÞ A W� ½0;T � : lim
h!0þ

Xt�hðoÞ � XtðoÞ
�h

exists

� �
:

Then ðPn lÞðCÞ ¼ T and there exists an Ft-adapted stochastic process Vt such

that _XXtðoÞ ¼ VtðoÞ for all ðo; tÞ A C. Moreover, there exists G: ½0;T � �Rn ! Rn,

with Gðt; �Þ Borel-measurable for all t, such that a.s. Xt is a Carathéodory solution

of the ordinary di¤erential equation

_uu ¼ Gðt; uÞ: ð3:1Þ

Corollary 3.1. Under the same assumptions of Theorem 3.1, for all t; x it holds

that

PðVt A y þ dy jXt ¼ xÞ ¼ dGðt;xÞðdyÞ:

Therefore, there cannot exist any Markov process associated with a di¤erential

inclusion, in the sense that the support of Pð _XXt A y þ dy jXtÞ can be multivalued

only on a ðo; tÞ set of ðPn lÞ-measure zero.

Proof of the Theorem. By the continuity of the trajectories, the process Xt is
jointly measurable. Let Ct ¼ fo : ðo; tÞ A Cg, Co ¼ ft : ðo; tÞ A Cg and dP̂P ¼
dPn dl. Observe that Ct is Ft-measurable for all t. By the absolute continuity
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assumption, lðCoÞ ¼ T for P-almost all o. Therefore, by Fubini’s theorem
P̂PðCÞ ¼

Ð
lðCoÞ dP ¼

Ð T

0 PðCtÞ dt, whence P̂PðCÞ ¼ T and PðCtÞ ¼ 1 for a.e. t A
½0;T �. Set

VtðoÞ ¼
limn!y

Xt�1=nðoÞ � XtðoÞ
�1=n

if o A Ct;

0 if o B Ct;

8<
: ð3:2Þ

by the above remark, Vt is Ft-adapted. Now, since Xt is Markov, for all t; h > 0,

Xtþh � Xt

h
?
Xt

Ft;

where ?Xt
means conditional independence given Xt; by passing to the limit as

h ! 0, we obtain for all t,
Vt ?

Xt

Ft:

Since Vt is Ft-measurable, this implies that Vt must be sðXtÞ-measurable. There-
fore, there exists G: ½0;T � �Rn ! Rn, Borel-measurable in the second variable,
such that, for all t, Vt ¼ Gðt;XtÞ. Fix now o such that X�ðoÞ is absolutely contin-
uous. Since _XXtðoÞ ¼ VtðoÞ for a.e. t A Co, it follows that X�ðoÞ is a solution of
(3.1). 9

4. Construction of the Markov Process

We consider the initial value problem

_xxðtÞ ¼ Fðx; uÞ; u A U ;

xð0Þ ¼ x0;

�
ð4:1Þ

together with a flow fmt : t > 0g of locally finite measures on R. We recall
that Rt denotes the reachable set of (4.1) in time t. The following assumptions
hold:

(H1) F is continuous, F ð� ; uÞ is Lipschitz, uniformly with respect to u, and
Fþ � F� > 0 on 6

t>0
Rt;

(H2) the measures mt admit a density ptð�Þ, positive on ðj�t ; jþt Þ; the functions
ptðxÞ are (LnB)-measurable in ðt; xÞ.

Remark. Assumption (H1) is satisfied if Fðx; uÞ ¼ f ðxÞ þ gðxÞu, u A ½�1;þ1�,
f ; g are Lipschitz, and gðxÞ > 0 on 6

t>0
Rt.

We set, for given times 0 ¼ t0 < t1 < � � � < tn aT and points x1; . . . ; xn,

w0 ¼ x0; wiþ1 ¼ minfxiþ1; j
þ
tiþ1�ti

ðwiÞg; i ¼ 0; . . . ; n � 1:

We begin by defining a candidate to be a probability kernel.
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Definition 4.1. We define, for all 0 < sa t, a.e. y A ðj�s ; jþs Þ,

Aðt; y; sÞ ¼ ptðjþt�sðyÞÞ
psðyÞ

msðj�s ; y�
mtðj�t ; jþt�sðyÞ�

d

dy
jþt�sðyÞ; ð4:2Þ

and assume
Aðt; y; sÞa 1; Et; s; a:e: y: ð4:3Þ

We set also Aðt; x0; 0Þ ¼ 0 for all t > 0. We define also, for 0 < s < t,

Pðdx; t; y; sÞ

¼ Aðt; y; sÞdjþt�sðyÞðdxÞ þ ½1 � Aðt; y; sÞ�1ðj�t ;jþt�sðyÞÞðxÞ
mtðdxÞ

mtðj�t ; jþt�sðyÞ� ; ð4:4Þ

for a.e. y A ðj�s ; jþs Þ,

Pðdx; t; x0; 0Þ ¼ 1ðj�t ;jþt ÞðxÞ
mtðdxÞ

mtðj�t ; jþt Þ
; ð4:5Þ

and

Pðdx; t; y; sÞ ¼
djþt�sðyÞðdxÞ for yb jþs ;

dj�t�sðyÞðdxÞ for ya j�s :

�
ð4:6Þ

Remark. The requirement (4.3), which is necessary and su‰cient for Pðdx; t; y; sÞ
to be a probability measure, since Ab 0 for all ðt; y; sÞ, is a kind of compatibility
between the dynamics and the flow of measures; su‰cient conditions for it are
given in Section 5.1. Observe that the definition of Pðdx; t; y; sÞ makes sense
because jþt ðyÞ is a.e. di¤erentiable with respect to y (see Lemma 2.1) and because
the reachable set never collapses to a singleton.

The construction is carried out by showing that the above defined probability
kernels Pðdx; t; y; sÞ satisfy the Chapman–Kolmogorov identity.

Theorem 4.1. Let x0 A R, F and mt be given satisfying (H1), (H2) and (4.3). Then

there exists a Markov process Xt, which satisfies the following requirements:

(M1) X0 ¼ x0 a.s.;

(M2) for all t > 0, BHR measurable,

PfXt A Bg ¼ mtðBX ðj�t ; jþt ÞÞ
mtðj�t ; jþt Þ

;

(M3) for all t; hb 0
PðXtþh a jþh ðXtÞÞ ¼ 1:

Moreover, the joint distributions of the process are given by

Ft1���tn
ðx1; . . . ; xnÞ ¼

Yn

i¼1

mti
ðj�ti

; wi�
mti

ðj�ti
; jþti�ti�1

ðwi�1Þ�
: ð4:7Þ
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Before proving the above statement we need a lemma, whose proof is a simple
computation, and is omitted.

Lemma 4.1. Let G: R ! R be bounded and measurable. Then, for a.e. y A
ðj�s ; jþs Þ,ð

GðxÞPðdx; t; y; sÞ ¼ 1

psðyÞ
d

dy

msðj�s ; y�
mtðj�t ; jþt�sðyÞ�

ðjþt�sðyÞ

j�t

GðxÞmtðdxÞ
" #

:

Proof. Step 1. We show first that the probability kernels Pðdx; t; y; sÞ satisfy the
Chapman–Kolmogorov identity, i.e. for every G bounded and Borel measurable
0a t < s < t, z A R,ð ð

GðxÞPðdx; t; y; sÞ
� �

Pðdy; s; z; tÞ ¼
ð

GðxÞPðdx; t; z; tÞ: ð4:8Þ

By Lemma 4.1, recalling the semigroup property of the maximal solutions jþ, it
holds thatð ð

GðxÞPðdx; t; y; sÞ
� �

Pðdy; s; z; tÞ

¼ 1

ptðzÞ
d

dz

mtðj�t ; z�
msðj�s ; jþs�tðzÞ�

ðjþs�tðzÞ

j�s

ð
GðxÞPðdx; t; y; sÞ

� �
psðyÞ dy

( )

¼ 1

ptðzÞ
d

dz

(
mtðj�t ; z�

msðj�s ; jþs�tðzÞ�

�
ðjþs�tðzÞ

j�s

d

dy

msðj�s ; y�
mtðj�t ; jþt�sðyÞ�

ðjþt�sðyÞ

j�t

GðxÞmtðdxÞ
" #

dy

)

¼ 1

ptðzÞ
d

dz

mtðj�t ; z�
msðj�s ; jþs�tðzÞ�

msðj�s ; jþs�tðzÞ�
mtðj�t ; jþt�tðzÞ�

ðjþt�tðzÞ

j�t

GðxÞmtðdxÞ
( )

:

The proof is concluded.

Step 2. We call Xt the Markov process whose transition probability is given by
(4.4). Then (M1)–(M3) are immediately implied by the expression of the transi-
tion probability.

Step 3. Property (4.7) holds.

Proof. We proceed by induction on n. For n ¼ 1 the result follows from the fact
that, for t > 0,

Pðdx; t; x0; 0Þ ¼ mtðdxÞ
mtðj�t ; jþt Þ

:
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For general n, notice that

Ft1���tn
ðx1; . . . ; xnÞ

¼ 1

mt1
ðj�t1

; jþt1
Þ

ð w1

j�t1

PðXt2
a x2; . . . ;Xtn

a xn jXt1
¼ x1Þmt1

ðdx1Þ

¼ ðby the Markov propertyÞ

¼ 1

mt1
ðj�t1

; jþt1
Þ

�
ð w1

j�t1

ð w2

j�t2

PðXt3
a x3; . . . ;Xtn

a xn jXt2
¼ x2ÞPðdx2; t2; x1; t1Þ

" #
mt1

ðdx1Þ

¼ ðby Lemma 4:1Þ

¼ 1

mt1
ðj�t1

; jþt1
Þ

ð w1

j�t1

1

pt1
ðx1Þ

d

dx1

"
mt1

ðj�t1
; x1�

mt2
ðj�t2

; jþt2�t1
ðx1Þ�

�
ð x25jþt2�t1

ðx1Þ

j�t2

PðXt3
a x3; . . . ;Xtn

a xn jXt2
¼ x2Þmt2

ðdx2Þ
#

pt1
ðx1Þ dx1

¼ 1

mt1
ðj�t1

; jþt1
Þ

mt1
ðj�t1

; w1�
mt2

ðj�t2
; jþt2�t1

ðw1Þ�

�
ð w2

j�t2

PðXt3
a x3; . . . ;Xtn

a xn jXt2
¼ x2Þmt2

ðdx2Þ

¼
mt1

ðj�t1
; w1�

mt1
ðj�t1

; jþt1
Þ

mt2
ðj�t2

; jþt2
�

mt2
ðj�t2

; jþt2�t1
ðw1Þ�

Ft2���tn
ðw2; x3; . . . ; xnÞ

¼ ðby inductive assumption and noticing that w2 a jþt2
Þ

¼
mt1

ðj�t1
; w1�

mt1
ðj�t1

; jþt1
�

mt2
ðj�t2

; jþt2
�

mt2
ðj�t2

; jþt2�t1
ðw1Þ�

mt2
ðj�t2

; w2�
mt2

ðj�t2
; jþt2

Þ
Yn

i¼3

mti
ðj�ti

; wi�
mti

ðj�ti
; jþti�ti�1

ðwi�1Þ�

¼
Yn

i¼1

mti
ðj�ti

; wi�
mti

ðj�ti
; jþti�ti�1

ðwiÞ�
:

The proof is complete. 9

Remark. For pt 1 1, the one-dimensional distribution becomes (obviously), for
x1 A Rt1

,

Ft1
ðx1Þ ¼

x1 � j�t1

jþt1
� j�t1

;

i.e. if x1 A Rt1
, PfXt1

a x1g is the ratio between the length of the interval ½j�t1
; x1�

and the length of the reachable set at time t1, otherwise it is 0 or 1; the two-
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dimensional distribution has a similar form:

Ft1t2
ðx1; x2Þ ¼ Ft1

ðx1Þ
x25jþt2�t1

ðx1Þ � j�t2

jþt2�t1
ðx1Þ � j�t2

;

i.e. if x2 is reachable from ½j�t1
; x1� in time t2 � t1 (we assume x1 A int Rt1

),
PfXt2

a x2 jXt1
a x1g equals the ratio between the length of the interval ½j�t2

; x2�,
and the length of the reachable set at time t2 � t1 from ½j�t1

; x1�, otherwise it is 1.
Higher-dimensional distributions behave analogously.

5. Study of the Markov Process Xt

5.1. Condition (4.3)

We begin by observing a necessary condition that any stochastic process satisfying
(1.3) must enjoy.

Proposition 5.1. Let ðW;F;P;XtÞ be a stochastic process satisfying a.s. (1.3) for

all h; tb 0. Then, for all y A ðj�t ; jþt Þ,

PðXtþh a jþh ðyÞÞbPðXt a yÞ: ð5:1Þ

Proof. By Lemma 2.2, the event fXt a yg is contained in fXtþh a jþh ðyÞg. 9

It is easy to see that condition (4.3) implies (5.1).

Remark 5.1 (Su‰cient Conditions for (4.3)). Condition (4.3) is equivalent to

k: y 7! mtðj�t ; jþt�sðyÞ�
msðj�s ; y� nonincreasing:

Observe that k is the ratio between the measure of the reachable set in time t � s

from the interval ðj�s ; y�, and the measure of that interval.
Assume now that Fþ is of class C1 (e.g. F ¼ f þ g, f ; g of class C1), and let

pt 1 1. Since, for all y A ðj�s ; jþs Þ, Aðs; y; sÞ ¼ 1, a su‰cient condition for (4.3) is

q

qt
Aðt; y; sÞa 0; Etb s; Ey 2 ðj�s ; jþs Þ: ð5:2Þ

It holds that

q

qt
Aðt; y; sÞ ¼ q

qt

y � j�s
jþt�sðyÞ � j�t

exp

ð t�s

0

Fþ0ðjþt ðyÞÞ dt

� �� �

¼ ðy � j�s Þ exp

ð t�s

0

Fþ0ðjþt ðyÞÞ dt

� �

� Fþ0ðjþt�sðyÞÞðjþt�sðyÞ � j�t Þ � Fþðjþt�sðyÞÞ þ F�ðj�t Þ
ðjþt�sðyÞ � j�t Þ

2
:
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Thus, recalling (H1), a su‰cient condition for (5.2) is y 7! FþðyÞ concave down,
in particular, F ð� ; uÞ is linear.

We observe also that (4.3) is violated, for t close to the explosion time, in the
case Fðx; uÞ ¼ x2 þ u, u A ½�1; 1�, pt 1 1, x0 ¼ 0; this example does not satisfy
the assumption of the global existence of solutions to (4.1), but can be easily
localized.

Remark 5.2 (Existence for Small Time). Condition (4.3) is satisfied by any
F ; pt regular enough, provided t > 0 is su‰ciently small. Indeed, (4.3) is equiva-
lent to

msðj�s ; y�
psðyÞ

d

dy
jþt�sðyÞa mtðj�t ; jþt�sðyÞ�

ptðjþt�sðyÞÞ : ð5:3Þ

Assume Fþ and pt are of class C1 on 6
t>0

ftg � ðj�t ; jþt Þ (the assumption on
Fþ holds if, e.g. F ðx; uÞ ¼ f ðxÞ þ gðxÞu and both f and g are C1), and that
lim inf t!0þ;x!0;x ARt

ptðxÞ > 0, ðd=dxÞFþ is bounded around x0, and Fþðx0Þ >
F�ðx0Þ. Set mðtÞ ¼ maxfðd=dyÞFþðyÞ : y A Rtg. By developing around t ¼ s, for s

close to 0, (5.3) is equivalent to

ðy � j�s þ oðy � j�s ÞÞð1 þ mðt � sÞðt � sÞ þ oðt � sÞÞ

a y � j�s þ ðt � sÞFþðyÞ � ðt � sÞF�ðj�s Þ þ oðt � sÞ;

which is implied by ðy � j�s Þmðt � sÞ < FþðyÞ � F�ðj�s Þ: Since y A ðj�s ; jþs Þ, the
above inequality is satisfied for all s > 0 su‰ciently small.

5.2. Regularity of Sample Paths

The trajectories of the process are a.s. continuous at t ¼ 0 by construction. We
state also the following:

Theorem 5.1. Assume that ðt; xÞ 7! ptðxÞ is continuous on 6
t A ð0;T �ftg � Rt, and

that Fþ is of class C1 on the same set. Then there exists a version X̂Xt of Xt such

that, with probability 1:

(1) For all t A ½0;T �; h > 0, X̂Xtþh a jþh ðX̂XtÞ.
(2) X̂Xt has only jump discontinuities, and its sample paths are right continuous;

moreover, X̂Xt is a Feller process, so that it has the strong Markov property;

furthermore, for all t A ½0;T �, X̂Xtþ ¼ X̂Xt a X̂Xt� , so that jumps may occur only

downwards.

(3) Let 0 < S < T, and define t ¼ infft A ðS;T � : Xt < jþt�SðXSÞg. Then

PðXt < Xt� j t < TÞ ¼ 1 a:s:;

i.e. Xt follows the maximal solution between jumps.

(4) The number of times Xt jumps in ½S;T �, with 0 < S < T, is finite with proba-

bility 1.
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Proof. Properties (1) and (2) are proved together. Suppose Xt is a Markov pro-
cess defined on some probability space ðW;F;PÞ with transition probability (4.4).
It follows from (4.4) that there is N A F such that PðNÞ ¼ 0 and

Xtþh a jþh ðXtÞ for all o B N; ð5:4Þ

for all t; h A Q, t A ½0;T �; h > 0. Note that, for any t A ½0;TÞ,

lim
s!tþ; s AQ

Xs

exists for all o B N. Indeed, fix t A ½0;TÞ and assume, by contradiction, that
lims!tþ; s AQ Xs does not exist. Then there exist h > 0 and sequences of rationals
tn # t, tn # t such that Xtn

> Xtn
þ h for all n, contradicting (5.4). Thus define, for

t A ½0;TÞ, o B N,
X̂XtðoÞ ¼ lim

s!tþ; s AQ
Xs;

note that X̂XtðoÞ is automatically right continuous for o B N, and (5.4) holds
for X̂Xt for any t; h > 0. We now show that X̂Xt and Xt have the same finite dis-
tributions; so, in particular, X̂Xt is Markov with transition probability (4.4). Let
F̂Ft1���tn

ðx1; . . . ; xnÞ ¼ PðX̂Xt1
a x1; . . . ; X̂Xtn

a xnÞ. Note that, by (4.7) and continuity
of pt, Ft1���tn

ðx1; . . . ; xnÞ is continuous in ðt1; . . . ; tnÞ, and so

Ft1���tn
ðx1; . . . ; xnÞ ¼ lim

s1#t1;...; sn#tn

Fs1;...; sn
ðx1; . . . ; xnÞ; ð5:5Þ

where s1; . . . ; sn vary in Q. Moreover, by definition of X̂Xt and dominated conver-
gence

F̂Ft1���tn
ðx1; . . . ; xnÞ ¼ lim

s1#t1;...; sn#tn

PðXs1
a x1; . . . ;Xsn

a xnÞ

¼ lim
s1#t1;...; sn#tn

Fs1;...; sn
ðx1; . . . ; xnÞ: ð5:6Þ

The conclusion follows from (5.5) and (5.6). We now show that, for o B N, the
path X̂XtðoÞ has the left limit in any point. This is proved as for the right limit:
nonexistence of the limit would violate (5.4). To complete the proof of (2) we still
have to show the Feller and the strong Markov property. First we prove that
PfX̂Xt > j�t ; Et > 0g ¼ 1. Indeed, fX̂Xt > j�t ; Et > 0g ¼ 7

T>0
6

g>0
fX̂Xt b j�t þ g;

Et A ð0;T �g :¼ 7
T>0

6
g>0

Wg;T . It is easy to see, by (4.7) and the regularity of

sample paths of X̂Xt, that supg>0 PðWg;TÞ ¼ 1 for all T . The Feller property now
follows from Lemma 4.1; this, together with right continuity, implies the strong
Markov property (see pp. 56–57 of [3]).

For the proof of (3) and (4), refer to [4]. 9

Remark 5.3 (The Infinitesimal Generator). By assuming, essentially, that the
densities are of class C1, a formal computation of the infinitesimal generator can
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be performed. We omit the details. We consider the derivative

ðLsGÞðyÞ ¼ d

dt

ð
GðxÞPðdx; t; y; sÞ

� �
jt¼s

for sb 0, y A R and assume that G is of class C1. For s > 0 and y A ðj�s ; jþs Þ it
holds that

ðLsGÞðyÞ ¼ G 0ðyÞ _jjþ0 ðyÞ � q

qtjt¼s
Aðt; s; yÞ

ð y

j�s

½GðxÞ � GðyÞ� psðxÞ
msðj�s ; y� dx:

The expression of the generator is compatible with the properties of Xt which have
already been proved, and suggests further ones. However, observe that

� q

qtjt¼s
Aðt; y; sÞ

diverges at j�s and is nonsmooth, so that the classical construction of the process
through its generator cannot be performed. A more detailed analysis is contained
in [4].

5.3. Probability that Xt Remains Below a Solution of (4.1)

The following computation will be used in Section 6. In this subsection the
assumptions of Theorem 5.1 are supposed to hold, and Xt is identified with its
regular version X̂Xt. Let j be a solution of (4.1) such that jt > j�t for all t > 0. We
want to compute

PT
j :¼ PfXt a jt; Et A ½0;T �g:

By the regularity of the sample paths of Xt, it holds that

PT
j ¼ lim

n!y
PfXt n

k
a jt n

k
; Ek ¼ 1; . . . ; ng;

where tn
k ¼ ðk=nÞT . Now, since jt n

iþ1
a jþ

T=n
ðjt n

i
Þ,

PfXt n
k
a jt n

k
; Ek ¼ 1; . . . ; ng

¼ Ft n
1
���t n

n
ðjt n

1
; . . . ; jt n

n
Þ

¼
Yn�1

i¼0

mt n
iþ1
ðj�tn

iþ1
; jt n

iþ1
�

mt n
iþ1
ðj�t n

iþ1
; jþ

T=n
ðjt n

i
Þ�

¼
Yn�1

i¼0

mt n
iþ1
ðj�t n

iþ1
; jt n

iþ1
�

mt n
iþ1
ðj�t n

iþ1
; jt n

iþ1
� þ mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

¼
Yn�1

i¼0

1 �
mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

mt n
iþ1
ðj�t n

iþ1
; jt n

iþ1
� þ mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

 !
:
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Note that mt n
iþ1
ðAÞ ¼ mt n

i
ðAÞ þ OðT=nÞ, for all measurable A; therefore,

log PfXt n
k
a jt n

k
; Ek ¼ 1; . . . ; ng

¼
Xn�1

i¼0

log 1 �
mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

mt n
iþ1
ðj�t n

iþ1
; jt n

iþ1
� þ mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

 !

¼ �
Xn�1

i¼0

(
mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

mt n
iþ1
ðj�t n

iþ1
; jt n

iþ1
� þ mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

þ o
mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

mt n
iþ1
ðj�t n

iþ1
; jt n

iþ1
� þ mt n

iþ1
ðjt n

iþ1
; jþ

T=n
ðjt n

i
Þ�

 !)

¼ �
Xn�1

i¼0

pt n
i
ðjt n

i
ÞðFþðjt n

i
Þ � _jjt n

i
ÞðT=nÞ þ oðT=nÞ

mt n
i
ðj�t n

i
; jt n

i
� þ OðT=nÞ þ o

T

n

� �( )

¼ �
Xn�1

i¼0

pt n
i
ðjt n

i
ÞðFþðjt n

i
Þ � _jjt n

i
Þ

mt n
i
ðj�t n

i
; jt n

i
�

T

n
þ o

T

n

� �( )
:

By taking the limit for n ! y we obtain, formally,

PT
j ¼ exp �

ðT

0

ptðjtÞðFþðjtÞ � _jjtÞ
mtðj�t ; jt�

dt

� �
;

the above integral diverges to þy unless jt coincides with jþt in a right neigh-
borhood of t ¼ 0. Thus

PT
j ¼

0 if jt < jþt ; Et > 0;

exp �
ðT

0

ptðjtÞðFþðjtÞ � _jjtÞ
mtðj�t ; jt�

dt

� �
if jt ¼ jþt ; Et A ½0; t0�; t0 > 0:

8><
>:

ð5:7Þ

6. The Solution Set as a Stochastic Process

In Section 4 the Markov process Xt was constructed in such a way that its density
pt equals a given flow, supported on the reachable set of a di¤erential inclusion.
The construction is based on ratios of measures of reachable sets, but it does not
fully take into account the structure of the di¤erential inclusion: in fact, the family
of joint distributions (4.7) uses the values of the solutions jþ� ðt1; . . . ; tn; x1; . . . ; xnÞ,
defined in Lemma 2.2, only at certain points. The construction of the present sec-
tion is still based on maximal solutions which are given constraints below, but
uses ‘‘all of them’’, instead of only their values at nodal points. This permits us to
define a process which is fully compatible with a di¤erential inclusion.

6.1. Construction of Process Yt

We recall that in Section 5.3 the probability that the process Xt remains below a
solution of (4.1) was computed. We use it to define a family of joint distributions.
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Definition 6.1. Let 0 < t1 < � � � < tn aT and let x1; . . . ; xn be points satisfying

xi A ½j�ti
; jþti

�; i ¼ 1; . . . ; n:
We define

Gt1���tn
ðx1; . . . ; xnÞ :¼ PfXt a jþt ðt1; . . . ; tn; x1; . . . ; xnÞ; Et A ½0;T �g; ð6:1Þ

Gt1���tn
ðx1; . . . ; xnÞ can be extended to the whole Rn by setting

Gt1;...; tn
ðx1; . . . ; xi; . . . ; xnÞ ¼ Gt1;...; tn

ðx1; . . . ; j
þ
ti
; . . . ; xnÞ

for xi > jþti
, and

Gt1;...; tn
ðx1; . . . ; xi; . . . ; xnÞ ¼ 0

for xi < j�ti
. Now set jt ¼ jþt ðt1; . . . ; tn; x1; . . . ; xnÞ. Recalling (5.7) we have

Gt1���tn
ðx1; . . . ; xnÞ ¼ exp �

ðT

t0

ptðjtÞðFþðjtÞ � _jjtÞ
mtðj�t ; jt�

dt

� �
; ð6:2Þ

where t0 ¼ t0ðt1; . . . ; tn; x1; . . . xnÞ ¼ maxft : jt ¼ jþt g > 0.

We now show that the family of joint distributions given in Definition 6.1 sat-
isfies a set of consistency conditions. The proof actually uses only one property of
Xt, so we state the theorem in the most general case. We will need the following
notation: given a function Gðx1; . . . ; xnÞ and an interval I ¼ ½a; b�, we define for
k ¼ 1; . . . ; n,

4k
I Gðx1; . . . ; xnÞ

¼ Gðx1; . . . ; xk�1; b; xkþ1; . . . ; xnÞ � Gðx1; . . . ; xk�1; a; xkþ1; . . . ; xnÞ:

Given intervals I1 ¼ ½a1; b1�; . . . ; In ¼ ½an; bn�, by applying recursively the above
operation, we have

41
I1
� � � 4n

In
Gðx1; . . . ; xnÞ ¼

X2 n

j¼1

ð�1ÞnðvjÞGðv1
j ; . . . ; vn

j Þ; ð6:3Þ

where vj ¼ ðv1
j ; . . . ; vn

j Þ—with fvlj gj running over the 2n possible choices between
al and bl, l ¼ 1; . . . ; n—and nðvjÞ equals the number of lower extrema al among
the coordinates of the vector vj (see pp. 242–243 of [11]).

Theorem 6.1. Let Xt be a stochastic process such that, for all t; h > 0,

PfXtþh a jþh ðXtÞg ¼ 1: ð6:4Þ
Then the family of functions

Gt1���tn
ðx1 � � � xnÞ; 0 < t1 < � � � < tn aT ; xi A ½j�ti

; jþti
�;

defined as in (6.1) satisfies the following conditions:
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(i) Gt1���tn
ðx1; . . . ; xnÞ is right-continuous, i.e. if x

ð jÞ
i # xi, x

ð jÞ
i A ½j�ti

; jþti
� for all

i ¼ 1; . . . ; n, then

Gt1���tn
ðxð jÞ

1 ; . . . ; xð jÞ
n Þ ! Gt1���tn

ðx1; . . . ; xnÞ;

(ii) if x
ð jÞ
i # �y for some i, then Gt1���tn

ðx1; . . . ; x
ð jÞ
i ; . . . ; xnÞ ! 0; if x

ð jÞ
i " þy

for all i ¼ 1; . . . ; n, then Gt1���tn
ðxð jÞ

1 ; . . . ; x
ð jÞ
n Þ ! 1;

(iii) if xi b jþti
ðt1; . . . ; ti�1; tiþ1; . . . ; tn; x1; . . . ; xi�1; xiþ1; . . . ; xnÞ for some i, then

Gt1���tn
ðx1; . . . ; xnÞ ¼ Gt1���ti�1tiþ1���tn

ðx1; . . . ; xi�1; xiþ1; . . . ; xnÞ;

(iv) let I1 � � � In be intervals; then

41
I1
� � � 4n

In
Gt1���tn

ðx1; . . . ; xnÞb 0:

Remark. If Xt satisfies the condition PfXtþh A ðj�t ; jþh ðXtÞ�g ¼ 1 (as is the case
of the process constructed in Section 4), then the first part of (ii) can be strength-
ened to

– if x
ð jÞ
i # j�ti

for some i, then Gt1���tn
ðx1; . . . ; x

ð jÞ
i ; . . . ; xnÞ ! 0.

Proof. (i) The continuity of Gt1���tn
ðx1; . . . ; xnÞ with respect to ðx1; . . . ; xnÞ is a

straightforward consequence of the continuity of jþt in Lemma 2.2 and of the
right-continuity of the measure induced by Xt.

(ii) It is a simple consequence of (6.4) and of the definition of Gt1���tn
ðx1; . . . ; xnÞ.

(iii) If xi b jþti
ðt1; . . . ; ti�1; tiþ1; . . . ; tn; x1; . . . ; xi�1; xiþ1; . . . ; xnÞ, then, by (6.4),

jþt ðt1; . . . ; tn; x1; . . . ; xnÞ ¼ jþt ðt1; . . . ; ti�1; tiþ1; . . . ; tn; x1; . . . ; xi�1; xiþ1; . . . ; xnÞ:

(iv) Fix x1; . . . ; xn and let e1; . . . ; en > 0. Set also Ii ¼ ½xi; xi þ ei�. Thanks to (iii),
it su‰ces to prove (iv) only in the case where, for all k ¼ 1; . . . ; n,

xk a jþtk�tk�1
ðxk�1Þ; xk þ ek a jþtk�tk�1

ðxk�1 þ ek�1Þ: ð6:5Þ

Let Ii ¼ ½xi; xi þ ei�. The following statement is obviously su‰cient to prove (iv).
For the sake of simplicity of notation, in the lemma below we omit writing times
t1; . . . ; tn in the functions jþ.

Lemma 6.1. For k ¼ 1; . . . ; n define

Ak ¼ fðx; tÞ : jþt ðx1 þ e1; . . . ; xk�1 þ ek�1; xk; xkþ1; . . . ; xnÞ < x

a jþt ðx1 þ e1; . . . ; xk�1 þ ek�1; xk þ ek; xkþ1; . . . ; xnÞg

(we mean e0 ¼ 0) and

Bk ¼ fðx; tÞ : xa jþt ðx1 þ e1; . . . ; xk þ ek; xkþ1; . . . ; xnÞg;

where both Ak and Bk are thought of as subsets of R� ½0; tn�. Then

41
I1
� � � 4n

In
Gt1���tn

ðx1; . . . ; xnÞ

¼ Pfgraph X� XA1 X � � �XAk 0q; graphðX�ÞHBkg:
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Proof. By induction on k. For k ¼ 1 the result is trivial, since by definition

41
I1
Gðx1; . . . ; xnÞ ¼ PfgraphðX�ÞXA1 0q; graphðX�ÞHB1g:

We now show the inductive step. First, it is easy to see, recalling (6.5), that

Ak ¼ fðx; tÞ : t A ðtk�1; tkþ1Þ; jþt ðxk�1 þ ek�1; xk; xkþ1Þ < x

a jþt ðxk�1 þ ek�1; xk þ ek; xkþ1Þg:

Now fix k < n. For j ¼ 1; . . . ; k let ~AAj ; ~BBj be defined as Aj ;Bj but with xkþ1 þ ekþ1

in place of xkþ1. One easily has

~BBk ¼ Bkþ1; ~AAj ¼ Aj for j < k; ~AAk IAk:

Moreover, because of the fact that the paths of Xt cannot cross upwards a maxi-
mal solution implies that

graphðX�ÞX ~AAk 0q; graphðX�ÞH ~BBk ) graphðX�ÞXAk 0q:

Thus, by inductive assumption

41
I1
� � � 4k

Ik
Gt1���tn

ðx1; . . . ; xk; xkþ1 þ ekþ1; xkþ2; . . . ; xnÞ

¼ PfgraphðX�ÞXA1 X � � �XAk 0q; graphðX�ÞHBkþ1g;

from which

41
I1
� � � 4k

Ik
4kþ1

Ikþ1
Gðx1; . . . ; xnÞ

¼ PfgraphðX�ÞXA1 X � � �XAk 0q;

graphðX�ÞHBkþ1; graphðX�ÞX ðBkþ1nBkÞ0qg;

and the conclusion follows, since Akþ1 ¼ Bkþ1nBk. 9

The proof of Theorem 6.1 is concluded. 9

Kolmogorov’s extension theorem (see p. 253 of [2]) yields the following:

Theorem 6.2. There exists a stochastic process ðYt; t A ½0;T �;QÞ such that

QfYt1
a x1; . . . ;Ytn

a xng ¼ Gt1���tn
ðx1; . . . ; xnÞ:

Remark. If Xt is the process constructed in Section 4, stronger consistency con-
ditions can be proved, which permit us to perform a construction of the proba-

bility measure Q directly in the set of solutions of (4.1), rather than in R½0;T � as
in Kolmogorov’s theorem. This would provide regularity of sample paths together
with existence; however, we think it is simpler to study them separately. Regular-
ity, together with other properties, is the topic of the next section.

6.2. Regularity of Sample Paths of Process Yt

We first prove a result concerning a probability at times t; t þ h. We recall that Rt

denotes the reachable set of (4.1) at time t.
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Proposition 6.1. Let h > 0, and assume that, for all x A 6
t>0

Rt, F ðx;UÞ is con-

vex. Then

QfYtþh A RhðYtÞg ¼ 1: ð6:6Þ

Proof. It su‰ces to show that, for all x,

QðYtþh > jþh ðxÞ jYt ¼ xÞ ¼ 0; ð6:7Þ

QðYtþh < j�h ðxÞ jYt ¼ xÞ ¼ 0: ð6:8Þ

Property (6.7) is obvious by (6.4). To prove (6.8), fix x and a closed interval
½a; b�H ðj�tþh; j

�
tþhðxÞÞ. If e > 0 is su‰ciently small,

QðYt A ½x � e; x þ e�;Ytþh A ½a; b�Þ ¼ 0:
Indeed,

QðYt A ½x � e; x þ e�;Ytþh A ½a; b�Þ

¼ Gt; tþhðx þ e; bÞ � Gt; tþhðx � e; bÞ � Gt; tþhðx þ e; aÞ þ Gt; tþhðx � e; aÞ

¼ 0;

since Gt; tþhðx þ e; bÞ ¼ Gt; tþhðx � e; bÞ, and Gt; tþhðx þ e; aÞ ¼ Gt; tþhðx � e; aÞ,
being jþ� ðt; t þ h; x þ e; bÞ ¼ jþ� ðt; t þ h; x � e; bÞ and jþ� ðt; t þ h; x þ e; aÞ ¼
jþ� ðt; t þ h; x � e; aÞ. 9

The regularity follows easily:

Theorem 6.3. Let T > 0. Then there exists a version ŶYt of Yt such that the func-

tion t 7! ŶYt, t A ½0;T �, is Q-a.s. a solution of _xx A co F ðx;UÞ, xð0Þ ¼ x0.

Proof. By Proposition 6.1 there exists a full measure set such that, for all Yt in it
and positive t; h A Q,

distðYtþh � Yt; h½F�ðYtÞ;FþðYtÞ�Þ ¼ oðhÞ:

By uniform continuity, set, for t A ½0;T �, ŶYt ¼ lims!t; s AQ Ys. Then ŶYt is Q-a.s.
Lipschitz, and thus Q-a.s. di¤erentiable for a.e. t; moreover, for a.e. t,

lim
h!0þ

ŶYtþh � ŶYt

h
A co F ðŶYt;UÞ Q-a:s:

Since a symmetrical argument holds also for h < 0, the sample paths of the pro-
cess are a.s. solutions of _xx A co Fðx;UÞ, xð0Þ ¼ x0. 9

Assuming Fðx;UÞ is convex, Theorem 6.3 and the following proposition imply
QðSÞ ¼ 1.

Proposition 6.2. The solution set S of (2.1), (2.2) is measurable with respect to the

s-field generated by the cylinder sets in R½0;1�.
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Proof. Let L ¼ supfFþðxÞ : x A 6
t A ½0;T � Rtg. For nb 1, i ¼ 1; . . . ; 2n, set tn

i ¼
i2�nT , and consider the nested sequence of measurable sets

Sn ¼ fx� A R½0;T � : xt n
iþ1

A xtn
i
þ ½j�2�nT ðxt n

i
Þ; jþ2�nTðxt n

i
Þ�; x is L-Lipschitzg:

It is easy to show that S ¼ 7
n

Sn, and therefore S is measurable. 9

The following result shows that the support of Q is all of S; thus Q is a rea-
sonable measure on S.

Proposition 6.3. Let S be endowed with the uniform convergence topology. Then

the support of the probability measure Q is the whole of S.

Proof. Observe that every open set in S contains a set from the family

fjt A S : j�t ðt1; . . . ; tn; x1; . . . ; xnÞ < jt < jþt ðt1; . . . ; tn; y1; . . . ; ynÞ; Et A ½0;T �g;

with 0 < t1 < � � � < tn aT , j�ti
< xi < yi < jþti

, n A N. Each of the above sets
clearly has positive probability. 9

6.3. The Law of _YYt

We consider here the process Yt associated with the Xt constructed in Section 4.
Moreover, we require that both ptðxÞ and FþðxÞ be of class C1; the regularity
of Fþ ensures that the map ðt1; . . . ; tn; x1; . . . ; xnÞ 7! jþ� ðt1; . . . ; tn; x1; . . . ; xnÞ is of
class C1. Under the above assumption, we can compute the joint densities of the
process Yt. In particular, we write jt ¼ jþt ðt1; . . . ; tn; x1; . . . ; xnÞ and set

Htðt1; . . . ; tn; x1; . . . ; xnÞ ¼
ptðjtÞ½FþðjtÞ � _jjt�

mtðj�t ; jt�
;

i.e. Ht is the integrand of the exponent in Gt1���tn
ðx1; . . . ; xnÞ. Then it holds, for x1

in the interior of Rt1
, that

qGt1
ðx1Þ

qx1
¼ �Gt1

ðx1Þ
ðT

0

qHtðt1; x1Þ
qx1

dt;

and

qGt1t2
ðx1; x2Þ
qx1

¼

0 if x2 < j�t2�t1
ðx1Þ;

�Gt1t2
ðx1; x2Þ

ðT

0

qHtðt1; t2; x1; x2Þ
qx1

dt if x2 A ðj�t2�t1
ðx1Þ; jþt2�t1

ðx1ÞÞ;

�Gt1
ðx1Þ

ðT

0

qHtðt1; x1Þ
qx1

dt if x2 > jþt2�t1
ðx1Þ:

8>>>>>>>><
>>>>>>>>:

ð6:9Þ
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Theorem 6.4. Let T > 0 be fixed. There exists DHW� ½0;T � such that

ðQn lÞðDÞ ¼ T and for all ðo; tÞ A D,

_YYt A fF�ðYtÞ;FþðYtÞg: ð6:10Þ
Moreover,

Qð _YYt ¼ F�ðYtÞ jYt ¼ yÞ ¼ �GtðyÞ
qGtðyÞ=qy

ðT

0

qHtðt; yÞ
qy

dt; ð6:11Þ

so that the law of _YYt is nontrivial.

Proof. The set D can be constructed with the same argument as in Theorem 3.1.
Now fix t such that _YYt exists a.s., and let 0 < l < 1. Set, for y A ½j�t ; jþt �, FlðyÞ ¼
lF�ðyÞ þ ð1 � lÞFþðyÞ, and observe that for all h > 0 su‰ciently small we have
that

y þ hFlðyÞ A RhðyÞ:
Therefore, by (6.9),

QðYtþh � Yt a hFlðYtÞÞ

¼
ðjþt
j�t

QðYtþh a y þ hFlðyÞ jYt ¼ yÞ qGt

qy
ðyÞ dy

¼
ðjþt
j�t

qGt; tþhðy; zÞ
qy

����
z¼yþhFlðyÞ

dy

¼ �
ðjþt
j�t

Gt; tþhðy; y þ hFlðyÞÞ
ðT

0

qHtðt; t þ h; y; zÞ
qy

����
z¼yþhFlðyÞ

dt dy:

The last expression, for h ! 0þ, tends to

�
ðjþt
j�t

GtðyÞ
ðT

0

qHt

qy
ðt; yÞ dt dy;

which does not depend on l. Therefore, the only possibility is (6.10), and the
last expression equals Qð _YYt ¼ F�ðYtÞÞ. The very same argument as before yields
(6.11). 9

7. Computations for the Processes Associated with _xx A [C1, 1]

We consider the di¤erential inclusion

_xxðtÞ A ½�1;þ1�;
xð0Þ ¼ 0;

�
ð7:1Þ

with the uniform distribution, pt 1 1.
The above setting may be considered as a model of ‘‘pure bounded noise’’ (i.e.

a perturbation of the zero dynamics) with complete uncertainty on its statistical
properties. Let Xt and Yt be the processes constructed in Sections 4 and 6 for the
case described above.
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7.1. Extinction Probability for Xt

Consider the process Zt defined for t A R by

Zt ¼
Xe t

et
:

Clearly, Zt A ½�1; 1� a.s. Moreover, via a change of variables, we obtain
~PPðdz; t;w; sÞ ¼ Pðet dx; et; esw; esÞ; hence by (4.4) one obtains

~PPðdz; t;w; sÞ ¼ e�ðt�sÞðw þ 1Þ
e�ðt�sÞðw � 1Þ þ 2

de�ðt�sÞðw�1Þþ1ðdzÞ

þ 2ð1 � e�ðt�sÞÞ
e�ðt�sÞðw � 1Þ þ 2

1ð�1; e�ðt�sÞðw�1Þþ1�ðzÞ
e�ðt�sÞðw � 1Þ þ 2

dz: ð7:2Þ

Note that ~PPðdz; t;w; sÞ depends on t; s only through t � s. So Zt is a time-
homogeneous Markov process.

Now we use Zt to show that

PfXt b 0; Et A ½0; a�g ¼ 0 ð7:3Þ

for all a > 0, so that the extinction probability Pa
0 ¼ 1 for all a > 0. It is easy to

see that the joint distributions of Xt are positively homogeneous with degree 0,
i.e.

Frt1���rtn
ðrx1; . . . ; rxnÞ ¼ Ft1���tn

ðx1; . . . ; xnÞ

for all r > 0, 0a t1 < � � � < tn, x1; . . . ; xn. Thus the probability in (7.3) is inde-
pendent of a, and we compute it for a ¼ 1. Note that

Xt b 0; Et A ½0; 1� ) Zn b 0; En A Z; na 0:

So we show
PfZn b 0; Ena 0g ¼ 0:

By the Markov property and the time homogeneity of Zt it is enough to show that

sup
w A ½�1;1�

PðZ1 b 0 jZ0 ¼ wÞ < 1: ð7:4Þ

Indeed, PfZn b 0; Ena 0g is bounded above by an infinite product of factors, all
equal to the left-hand side of (7.4). By direct computation, using (7.2) we get

PðZ1 b 0 jZ0 ¼ wÞ ¼
1 � 2ð1 � e�1Þ

½e�1ðw � 1Þ þ 2�2
if e�1ðw � 1Þ þ 1b 0;

0 otherwise:

8>><
>>:

So PðZ1 b 0 jZ0 ¼ wÞa ð1 þ e�1Þ=2 < 1, concluding the proof of (7.4).
Further properties can be observed. In particular, from (7.3) and PfXt a 0;

Et A ½S;T �g ¼ 0, which follows from (5.7), we have that, for all e > 0, Xt hits a.s.
0 for infinitely many times t A ½0; e�.

116 G. Colombo, P. D. Pra, V. Křivan, and I. Vrkoč



Finally, observe that the positive homogeneity of Ft1���tn
ðx1; . . . ; xnÞ together

with (7.3) imply that, for all h,

lim
T!þy

PfXt b h; Et A ½0;T �g ¼ 0 a:s:;

so that a.s. the process leads to extinction.

7.2. Joint Distributions for Yt

A direct computation provides, for x1 A ½�t1; t1�:

Gt1
ðx1Þ ¼ exp

x1 � t1

x1 þ t1

� �
; ð7:5Þ

Gt1t2
ðx1; x2Þ

¼

8>>>>>>>>>><
>>>>>>>>>>:

exp
x2 � t2

x2 þ t2

� �
for x2 A ½�t2; x1 � t2 þ t1Þ;

exp
x1 � t1

x1 þ t1

� �
exp

x2 � x1 � t2 þ t1

x2 þ t2

� �
for x2 A ½x1 � t2 þ t1; x1 þ t2 � t1�;

exp
x1 � t1

x1 þ t1

� �
for x2 A ðx1 þ t2 � t1; t2�:

ð7:6Þ

In the above formulas, we mean e�a=0 ¼ 0 for a > 0. In the general case,
Gt1���tn

ðx1; . . . ; xnÞ appears as a product of as many factors of the type

eðxi�ðxi�1þti�ti�1ÞÞ=ðxiþtiÞ as is the number of active constraints. If all points are
reachable from the preceding one, i.e. xiþ1 A Rtiþ1�ti

ðxiÞ for all i, we obtain that

Gt1���tn
ðx1; . . . ; xnÞ ¼ exp

Xn

i¼1

xi � xi�1 � ti þ ti�1

xi þ ti

 !
; ð7:7Þ

where we assume x0 ¼ t0 ¼ 0.

7.3. The Law of _YYt

The same computation of Theorem 6.4 yields that

Qð _YYt ¼ �1Þ ¼
ð t

�t

eðs�tÞ=ðsþtÞ t � s

ðt þ sÞ2
ds ¼

ðþy

0

e�x x

1 þ x
dx;

observe that this value is independent of t. It also follows that

Qð _YYt ¼ �1 jYt ¼ aÞ ¼ t � a

2t
;

Qð _YYt ¼ 1 jYt ¼ aÞ ¼ t þ a

2t
:
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7.4. The Extinction Probability for Yt

Let T > 0 be fixed and let h A ð�T ;TÞ. We consider the probability

Qfbt A ½0;T � : Yt < hg ¼ 1 � QfYt b h; Et A ½0;T �g

¼ 1 � lim
n!y

QfYiT=n b h : Ei ¼ 1; . . . ; ng:

Set QnðhÞ ¼ QfYiT=n b h : Ei ¼ 1; . . . ; ng. Thanks to the regularity of trajec-
tories and the knowledge of joint distributions, all Qn are known. Figure 1 shows
1 � QnðhÞ plotted against h.

8. Conclusions

In this paper we give results on probabilistic modeling for bounded noise. The
aim is to contruct stochastic processes satisfying the following two requirements:

(1) The support of the distribution of the process on its path space coincides
with the set of solutions of a di¤erential inclusion;

(2) many features of the process can be analyzed by explicit computations, via
its finite-dimensional distributions.

We have shown that Markov processes are not suitable models for these purposes.
In fact, Markov processes with absolutely continuous trajectories are solutions, in
the Carathéodory sense, of a deterministic di¤erential equation: ‘‘randomness’’
may only arise from the nonuniqueness of the solution.

We have constructed non-Markovian processes that satisfy requirements (1) and

Fig. 1. 1 � QnðhÞ is plotted against h (parameters: n ¼ 25, T ¼ 1).
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(2) for a scalar di¤erential inclusion. Having fixed the di¤erential inclusion, there
are still several degrees of freedom in the choice of the related stochastic process,
making this class of process quite flexible for identification and estimation.

The construction presented in this paper relies on the total order of the real
line. Extension to higher dimensions or to partially ordered sets is currently under
investigation.

Acknowledgement. We thank an anonymous referee for sharp and constructive
criticisms.
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